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ORIGINAL ARTICLE

The yin and yang of two opponent processes of sleep-wake regulation: 
Sex-associated differences in the spectral EEG markers of the drives for sleep and 
wake
Vladimir B. Dorokhova, Alexandra N. Puchkovaa, Dmitry E. Shumova, Eugenia O. Gandinaa, Anton O. Taranova, 
Natalya V. Liguna, Dmitry S. Sveshnikovb, Elena B. Yakuninab, Olga V. Mankaevab, and Arcady A. Putilov a

aLaboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 
Moscow, Russia; bDepartment of Normal Physiology, Medical Institute of the Peoples’ Friendship University of Russia, Moscow, Russia

ABSTRACT
Although objectively measured characteristics of sleep efficiency and quality were found to be 
better in women than men, women more frequently than men suffer from poor or insufficient or 
non-restorative sleep. We explored this apparent paradox by testing the sex-associated differences 
in electroencephalographic (EEG) indicators of two opponent processes of sleep-wake regulation, 
the drives for sleep and wake. We tried to provide empirical support for the hypothesis that 
a stronger women’s sleep drive can explain better objective characteristics of sleep quality in 
women than men, while a stronger women’s wake drive can be an explanation of a higher 
frequency of sleep-related complaints in women than men. To our knowledge, this was the first 
attempt to examine the associations of sex with scores on the 1st and 2nd principal components of 
the EEG spectrum that can serve as objective spectral EEG markers of the opponent drives for sleep 
and wake, respectively. The particular prediction was that, in women compared to men, not only 
the 1st principal component score but also the 2nd principal component score could be higher (i.e. 
both drives could be stronger). In a sample of 80 university students (40 females), the EEG signals 
were recorded during 160 afternoon napping attempts (50 min or longer). The difference between 
male and female students in sleep latencies did not reach a statistically significant level. In 
accordance with our prediction, both principal component scores were found to be higher in 
female than in male students irrespective of sleep stage. It is likely that the influence of the wake 
drive is entirely overlooked in the polysomnographic studies due to the predominant contribution 
of the indicators of the sleep drive to the conventional objective characteristics of sleep quality. 
Therefore, a stronger women’s sleep drive can be an explanation of women’s better sleep quality in 
the results of polysomnographic studies. On the other hand, if a stronger women’s wake drive can 
influence the perception of their sleep quality, this can explain their more frequent sleep-related 
complaints.
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Introduction

Sleep in women differs from sleep in men in several 
respects. On the one hand, polysomnographically mea
sured characteristics of sleep efficiency and quality were 
consistently found to be better in women than men 
(Bixler et al. 2009; Fukuda et al. 1999; Redline et al.  
2004; Unruh et al. 2008; Voderholzer et al. 2003; 
Walsleben et al. 2004). These characteristics include 
shorter sleep latencies, fewer nocturnal awakenings, 
less stage 1 sleep, and deeper sleep (Ehlers and Kupfer  
1997; Goel et al. 2005; Hume et al. 1998; Redline et al.  
2004; Roehrs et al. 2006). On the other hand, subjective 
sleep reports of women suggested that, in contrast to the 
objective characteristics, they have a higher need for 
sleep (Groeger et al. 2004; Jean-Louis et al. 2000; 

Reyner et al. 1995; Ursin et al. 2005), more frequently 
suffer from insufficient or non-restorative sleep (Mai 
and Buysse 2008, Soares and Murray 2008; van den 
Berg et al. 2009), and more often diagnosed with insom
nia and hypersomnia (Ohayon 1996, 2002; Pajėdienė 
et al. 2024; Young et al. 1993; Zhang and Wing 2006).

The EEG slow-wave activity during non-rapid-eye- 
movement (NREM) sleep (e.g., the EEG power density 
in the frequency range between 1 Hz and 4 Hz) serves as 
the major conventional indicator of strength of the drive 
for sleep or, in other terms, as the major quantitative 
measure of deep sleep and homeostatic sleep pressure 
(Borbély 1982; Daan et al. 1984). This slow-wave activity 
was consistently shown to be higher in healthy women 
than men thus indicating that objective sleep quality is 
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better in women than men (Carrier et al. 2001; Dijk et al.  
1989; Fukuda et al. 1999; Svetnik et al. 2017).

Slow-wave activity can also be interpreted in the light 
of the opponent process model of sleep-wake regulation 
(Dijk and Czeisler 1995; Edgar et al. 1993) as reflecting 
the combined influence of the two drives, the drive for 
sleep and the drive for wake, on the EEG spectrum. Our 
previous results suggested that the conventional mea
sure of sleep pressure, delta power, reflects the com
bined influence of two drives on the EEG spectrum, i.e., 
not only the influence of the drive for sleep but also the 
opposing influence of the drive for wake (Putilov 2011; 
Putilov et al. 2013). The influence of the sleep drive can 
be separated from the influence of the wake drive by 
calculating scores on the 1st and 2nd principal compo
nents of the EEG spectrum (Putilov 2011; Putilov et al.  
2013). Previously, we compared the effect of age on 
these scores and concluded that the aging process is 
associated not only with a weaker sleep drive as indi
cated by both lower levels of NREM slow-wave activity 
and lower score on the largest (1st) principal component 
of the EEG spectrum but also with a relative strong wake 
drive as indicated by a higher score on the 2nd principal 
component (Putilov 2015; Putilov and Donskaya 2016; 
Putilov et al. 2013). The superposition of the effect of 
these weaker sleep drive and stronger wake drive was 
suggested to underlie the age-related deterioration of 
sleep quality, e.g., unwanted awakenings, difficulty of 
falling asleep, “lightened” sleep, sleep fragmentation, 
decreased duration of nighttime sleep, etc. 
Additionally, a stronger wake drive was proposed to 
explain why, paradoxically, older adults better than 
younger adults tolerate sleep deprivation (e.g., Dijk 
et al. 2010; Duffy et al. 2009; Landolt et al. 2012; 
Putilov and Donskaya 2016).

To the best of our knowledge, the sex-associated 
differences in the strengths of the drives for sleep and 
wake have not yet been examined. Here, we tried to 
explore the apparent paradox of sex-associated differ
ences in objective vs. subjective measures in the light of 
hypothesis of sex-associated differences in the principal 
component structure of the EEG spectrum. We tested 
the hypothesis that a stronger women’s sleep drive can 
explain their better objective characteristics of sleep 
quality, while a stronger women’s wake drive can be 
an explanation of their higher frequency of sleep- 
related complaints. We predicted to find that 
a stronger sleep drive in women than men is reflected 
in their elevated score on the 1st principal component. 
Since, during NREM sleep, a higher level of slow-wave 
activity is the major contributor to a higher 1st principal 
component score, the elevation of both these indexes 
(i.e., a higher level of this activity and a higher 1st score) 

could point to the sex-associated difference in the sleep 
drive. Therefore, a stronger sleep drive would underlie 
a better objective sleep quality in women than men, but 
such a stronger women’s sleep drive cannot be 
a reasonable explanation of their self-reports on lower 
sleep quality and non-restorative sleep. To propose the 
explanation of this paradox, we hypothesized that 
a stronger opposing drive for wake would explain 
a higher frequency of self-reports of low sleep quality 
and symptoms of insomnia in women than men. 
Consequently, we predicted to find that 1) men and 
women are also different in score on the 2nd principal 
component of the EEG spectrum, a marker of the 
strength of the wake drive, and that 2) this score is 
also elevated in women thus indicating that the drive 
for wake would be stronger in women than in men.

Methods

Participants of the nap study

All procedures of the present study were performed in 
accordance with the ethical standards laid down by the 
1964 Helsinki Declaration and its later amendments. 
The Ethics Committee of the Institute of Higher 
Nervous Activity and Neurophysiology approved the 
experimental protocols in June 2019 (Approval#12402- 
02-7112). The participants were informed in detail 
about all procedures, and informed written consent 
was obtained from each participant of the study. The 
nap study was conducted in 2020–2023 during October, 
November, and December. Unpaid volunteers of this 
study were 40 male and 40 female university students 
with a mean age ± standard deviation of 20.40 ± 1.56 
and 20.25 ± 1.14 years, respectively.

The structured interview with a sleep researcher 
preceded the invitation to participate in the study 
and to choose the dates for three afternoon naps. 
The interview was focused on the following exclusion 
criteria: age either younger than 18 or older than 23  
years, history of mental or sleep disorder, any com
plaints about poor physical condition and function
ing, current mild cold and missing classes due to any 
sickness in two previous weeks, involvement in shift 
or night work and crossing several time zones in the 
previous month, irregularity of sleep-wake schedule 
exemplified by more than 1-h difference in weekday 
bedtimes, frequent sleep reduction exemplified by, at 
least, one night of partial sleep deprivation in the 
previous week. The exclusion criteria for female stu
dents additionally included pregnancy or breastfeed
ing, and they were also asked about the day of last 
menstruation and the usual cycle length.
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Study protocol

Each visit to a sleep laboratory was preceded and fol
lowed by attending classes in the same university build
ing. During 1 month, each study participant was invited 
to have three napping attempts. The intervals between 
them varied from 3 days to 3 weeks. Each visit to the 
sleep laboratory was scheduled at the same 
afternoon hour (not earlier than 12:30 and not later 
than 15:30). Usually, the visit lasted approximately 1 
h in the case of three 50-min napping attempts (n =  
27) and approximately 1 h and 40 min in the case of 
three 90-min napping attempts (n = 53). The first nap
ping attempt was regarded as an adaptation nap, while, 
for the current study, the analysis of the polysomno
graphic records was limited to Nap 2 and Nap 3 
(Figure 1a).

Polysomnographic recordings

During the preparation of polysomnographic record
ings and during these recordings, a participant was 
lying in bed in a room of the sleep laboratory. He/she 
was instructed to try to relax, to fall asleep after light off, 
and to sleep for the next 50 or 90 min. The recordings 
were performed using a Neurovisor BMM-36 (Medical 
Computer Systems LLC, Moscow), the MCScap Sleep 
electrode helmet, and the NeoRec 1.4 software. The 
electrodes were applied in accordance with the standard 
monitoring montage known as the International 10–20 
system of electrode placement. The EEG signals were 
obtained from 19 channels connected by a monopolar 
10–20 scheme with two reference electrodes on the 
mastoid bones. Among other recorded polysomno
graphic signals were the signals from two electrooculo
gram channels, one electromyogram channel, and one 
electrocardiogram channel. The signals were condi
tioned by the high-pass, low-pass, and notch filters 
(0.5 Hz, 35 Hz, and 50 Hz frequencies, respectively). 
The sampling frequency was 1000 Hz.

Sleep scoring

In accordance with the conventional scoring procedure 
(Iber et al. 2007), visual scoring on 30-s epochs of each 
record was performed independently by two experi
enced scorers. The initial disagreement, depending 
upon the stage, varied from 10% (N1) to 2% (N3). In 
order to finally produce consensus scores, the scorers 
reexamined together all intervals with discrepant scores. 
They were uninformed about names and sex of the 
study participants. The 30-s epochs were classified into 
5 stages: wake stage (W), three stages of NREM sleep 

(N1, N2, N3), and rapid-eye-movement (REM) 
sleep (R).

Spectral analysis of the EEG signals

The spectral EEG power densities were calculated from 
data on the EEG signals recorded from electrodes placed 
at 5 derivations (Fz, F4, Cz, Pz, and O2 referenced to the 
ear mastoid sites, M1/M2). The records of the signals 
from each of these derivations were visually inspected 
on 1-s epochs to remove all epochs containing artifacts 
from further analysis. Spectral power densities for the 
artifact-free epochs were computed using the FFTW 
(Fastest Fourier Transform in the West) package 
(Frigo and Johnson 2005; see also www.fftw.org for 
more detail). With few exceptions, mean spectra for 
each 30-s epoch were obtained by averaging over as 
many as 20–30 1-s spectra.

Further analysis of spectra was limited to the first 16 
single-Hz frequency bandwidths, between 1 Hz and 16  
Hz (i.e., 0.50–1.49 Hz for 1 Hz, 1.50–2.49 Hz for 2 Hz, 
2.50–3.49 Hz for 3 Hz, . . ., 15.50–16.49 Hz for 16 Hz). 
These sets of 16 single-Hz power densities were aver
aged within each 30-s interval of EEG records, ln- 
transformed, and assigned to one of the 5 stages. For 
statistical analysis, the individual sets of spectral powers 
(100 or 180 per derivation of each napping attempt) 
were further averaged, e.g., over derivations and/or 
within each nap (Figure 2b) and/or within each stage 
(Figure 1b), etc. Moreover, these 16 ln-transformed 
single-Hz power densities were averaged after averaging 
over derivations (Figure 3) within four 4-Hz frequency 
ranges, delta (1 Hz-4 Hz), theta (5 Hz-8 Hz), alpha (9  
Hz-12 Hz), and sigma (13 Hz-16 Hz). Analysis of the 
EEG indexes within each of the 5 stages was performed 
for 28 study participants, and epochs were assigned to 
all 5 rather than a smaller number of stages (Figure 1b).

Analysis of principal component structure of the 
EEG spectrum

The SPSS23.0 statistical software package (IBM, Armonk, 
NY, USA) was applied for all further analyses including 
principal component analysis of the sets of 16 ln- 
transformed single-Hz power densities (1 Hz-16 Hz) 
from each of 5 derivations. Scores on the 1st and 2nd 

principal components of variation in the EEG power 
spectra were calculated and averaged (Figure 4) in 
a similar way as the sets of 16 ln-transformed single- 
Hz powers and spectral powers in 4 frequency ranges 
(Figure 3).

Depending upon derivation, the variation explained 
by the 1st and 2nd principal components varied from 50% 
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to 55% and from 19% to 32%, and their eigenvalues 
varied from 7.9 to 8.8 and from 3.1 to 5.1, respectively. 
The pattern of loadings of 16 single-Hz spectral powers 
on each of the principal components was almost identi
cal for 5 derivations. Loadings of alpha frequencies on 
both components were positive, loadings of delta fre
quencies on either the 1st or the 2nd principal component 
were either positive or negative, respectively, loadings of 
sigma and theta frequencies on the 1st principal compo
nent were, similarly to delta loadings, positive, and load
ings of sigma frequencies on the 2nd principal 
component were, similarly to alpha loadings, positive.

Participants of the preceding online survey

An online survey of the same student population 
(n = 633) preceded the nap study (December 2019). 

The major purpose of this survey was to explore day
time sleepiness, chronotype, sleep-wake behavior, and 
habits in university students. In the present study, the 
results of this survey were used to confirm the signifi
cance of the association of being female with lower 
subjective sleep quality. When attending classes, stu
dents were invited by the lecturers to voluntarily parti
cipate in this survey. The mean age and standard 
deviation of male and female students were 19.0 and 
1.5 years and 19.1 and 1.5 years, respectively. The stu
dents were asked to anonymously respond from their 
smartphones to the questions about their sleep and 
sleepiness. To collect their responses, the web page 
was designed (https://docs.google.com/forms/d/e/ 
1FAIpQLSdIEeg00XFqmoULmKjXMqGI9rtMwpPD4 
HVwv5ZqYtH-BDMd3A/viewform). The question
naires included:
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Figure 2. Power spectra in the range 1−16 Hz for two naps and 9 10-min intervals. (a) Averaged within two naps and over 5 10-min 
intervals for the whole sample. (b) Averaged over two naps and within 9 10-min intervals (only 90-min napping attempts).
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1) The 8-item Epworth Sleepiness Scale (ESS) for the 
determination of level of daytime sleepiness, and

2) The Pittsburgh Sleep Quality Index (PSQI) for 
self-reporting monthly averaged sleep onset latency, 
sleep duration, hours slept, sleep efficiency, and subjec
tive sleep quality score.

The ESS (Johns 1991) quantifies the likelihood to fall 
asleep in each of 8 different daily life situations with 
a scale ranging from 0 to 3, where 0 corresponds to none 
and 3 to the situation when dozing off is the most likely. 
The total score ranges from 0 to 24. In the samples 
collected in this survey (n = 633), Cronbach’s Alpha 
attained the value of 0.698.

To obtain self-reports of monthly averaged latency to 
sleep onset, sleep duration (time between sleep onset and 
offset), hours slept, percentage of sleep (sleep efficiency, %), 
and subjective sleep quality score, the responses to several 

questions 1–4 and 9 of the PSQI (Buysse et al. 1989) were 
used.

Statistical analysis

In the nap study, two-, three- and four-way repeated mea
sure ANOVAs (rANOVAs) were run to test the signifi
cance of the main effect of the independent factor “Sex” 
(male vs. female students). The major results obtained for 
this effect are summarized in (Table 1) and illustrated in 
Figures 1a–c, 2 a–c, 3 a–c, 4 a–c and 5a–c.

Pearson’s correlation coefficients were computed to 
illustrate the association of principal component scores 
with delta power, the conventional index of sleep pressure 
(Table 2). Data from the survey were analyzed to test the 
significance of the association of being female with lower 
subjective sleep quality. The binary logistic regression 
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Figure 3. Time courses of spectral powers in 4 frequency rangers across 10-min intervals. (a) Averaged within 5 10-min intervals of 
each of two naps. (b) Averaged over two naps and within 9 10-min intervals (only 90-min napping attempts).
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Figure 4. Time courses of the 1st and 2nd principal component scores across 10-min intervals. (a) Averaged within 5 10-min intervals of 
each of two naps. (b) Averaged over two naps and within 9 10-min intervals (only 90-min napping attempts).

Table 1. F-ratio for main effect of independent factor “Sex” in 10 rANOVAs.
Spectra PC score Stage Latency ESS score

F1/78 F1/26 F1/78 F1/26 F1/78 F1/26 F1/78 F1/26 F1/78 F1/26

F-ratio for “Sex” 3.57 7.78** 6.15* 5.33* 7.92** 7.89** 0.05 0.33 1.37 3.16

Repeated measures
“2 Naps” + - + - + + + + + +
“5 Intervals” + - + - + - - - - -
“9 Intervals” - - - - - + - - - -
“16 Frequencies” + + - - - - - - - -
“2 PC scores” - - + + - - - - - -
“4 Stages” - - - - + - - - - -
“5 Stages” - + - + - + - - - -
“2 Latencies” - - - - - - + + - -

“Sex” was the only independent factor (male vs. female, n = 40/15 vs. 40/13, respectively) in two-, three-, four-way rANOVAs (i.e., with one-, two, and three 
repeated measures marked as “+”); “2 Naps”: (Nap 2 and Nap 3); “5 Intervals:” 5 10-min intervals of napping attempt; “9 Intervals:” 9 such intervals; “16 
Frequencies:” 16 single-Hz frequencies from 1 Hz to 16 Hz; “2 PC score:” Scores on the 1st and 2nd Principal Components of the EEG spectrum; “4 Stages:” 
Stages W, N1, N2, and N3; “5 Stages:” The same 4 stages plus stage R; “2 Latencies:” Latencies to N1 and N2. ESS score: The 8-item Epworth Sleepiness Scale 
was administered prior to each of the napping attempts for scoring subjective daytime sleepiness (Johns 1991). Level of significance for F-ratio: *p < 0.05, 
**p < 0.01.
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analysis was applied to predict the gender of participants of 
the sleep survey (Table 3).

Results

According to the results of two-, three- and four-way 
rANOVAs, Nap 2 and Nap 3 did not significantly 
differ in spectral EEG indexes. Two naps did not 

differ in the proportion of female students in the 
follicular and luteal phases of their cycle (7 and 10 
vs. 11 and 10 in the follicular and luteal phases during 
the 2nd and 3rd nap, respectively, χ2 (df = 1) = 0.921, p =  
0.337).

Neither ESS scores nor latencies to stages 1 and 2 
sleep (Figure 1a) showed a statistically significant sex- 
associated difference (Table 1).
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Figure 5. Time courses of durations of 4 or 5 stages across 10-min intervals. (a) Two principal component scores, their difference, and 
sum averaged within 5 10-min intervals of each of two naps. (b) Two principal component scores, their difference, and sum averaged 
over two naps and within 9 10-min intervals (only 90-min napping attempts).

Table 2. Pearson’s correlation coefficients between delta power and principal component scores.
Index Spectral power in the delta range (1 Hz-4 Hz) on 9 10-min intervals of nap

Min 5 15 25 35 45 55 65 75 85
PC score n = 80 n = 80 n = 80 n = 80 n = 80 n = 53 n = 53 n = 53 n = 53

1st 0.528*** 0.743*** 0.772*** 0.814*** 0.856*** 0.876*** 0.878*** 0.882*** 0.880***
2nd 0.079 −0.031 −0.138 −0.412*** −0.559*** −0.741*** −0.529*** −0.407*** −0.482***

Significant Pearson’s correlation coefficients reflect the combined contribution of the two Principal Component (PC) scores, the spectral EEG markers of the 
drives for sleep and wake, respectively, to delta power, and the conventional index of sleep pressure. Level of significance of the coefficient: ***p < 0.001.
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Irrespective of the stage, female study participants 
had higher spectral power densities on the whole tested 
interval of frequencies from 1 Hz to 16 Hz (Table 1 and 
Figure 1b), and, as predicted, they had higher scores on 
two principal components of the EEG spectrum (Table 1 
and Figure 1c).

The results suggesting higher spectral powers and 
higher scores in female students were confirmed by 
the rANOVAs. Such higher powers and scores were 
found in female students on each of 10-min intervals 
of 90- or 50-min napping attempts (Table 1 and Figures 
2–4). The relations between spectral powers and princi
pal component scores are documented in Table 2 on the 
example of correlations with powers in the delta fre
quency range. The significant correlations between 
these powers and scores suggest the combined contribu
tion of the two scores, the spectral EEG markers of the 
drives for sleep and wake, respectively, to delta power, 
and the conventional index of sleep pressure.

There were also significant sex-associated differences 
in durations of stages (Table 1). While higher durations 
of W, N1, and N3 were found in male students, a higher 
duration of N2 was found in female students (Table 1 
and Figure 5).

As predicted, the regression analysis of data from the 
survey yielded a significant association of being female 
with lower subjective sleep quality scores (Table 3). The 
associations with other self-assessments (ESS score, 
latency to sleep onset, sleep duration, hours slept, and 
sleep efficiency) were not significant predictors of 
gender.

Discussion

It is well-established that, compared to men, women are 
better than men on sleep quality measured by the poly
somnographic method, but, in contrast, they more often 
than men report sleep-related complaints. Here, we 
tested the hypothesis that these paradoxical observa
tions can be explained by the sex-associated differences 

in the opposing drives for sleep and wake. We hypothe
sized that both drives could be stronger in women than 
men. The women’s stronger sleep drive might be 
a major contributor to the objective characteristics of 
sleep quality, while the women’s stronger wake drive 
might influence on their subjective feeling of worse 
sleep quality. The hypothesis of women’s stronger drives 
was supported by the present results of a comparison of 
principal component scores in male and female stu
dents. As predicted, we found significantly higher scores 
on both principal components of the EEG spectrum in 
female than in male students thus supporting the pro
posed explanation of the paradox of bidirectional sex- 
associated differences in objective vs. subjective indica
tors of sleep quality.

The present results also confirmed several previous 
reports (e.g., Carrier et al. 2001; Dijk et al. 1989; Fukuda 
et al. 1999; Svetnik et al. 2017) indicating that the 
amplitude of NREM slow-wave activity is higher in 
women than men. In more detail, a stronger sleep 
drive indicated by a higher level of this activity and 
a higher 1st score can explain why women compared 
to men demonstrate in polysomnographic studies 
higher sleep efficiency, higher sleep need, and deeper 
sleep. Thus, a strong sleep drive can underlie the sex- 
associated differences in objective measures of sleep 
quality as well as in some but not all subjective assess
ments, such as sleep desire, sleep satisfaction, and 
hypersomnolence. However, this difference in the 
strength of the sleep drive cannot explain the gaps 
between sexes in such subjective reports as the com
plaints about insufficient or non-restorative sleep and 
insomnia. Given that the 1st principal component, an 
indicator of the strength of the sleep drive, is the largest 
contributor to the EEG power, the contribution of the 
2nd component, an indicator of the strength of the wake 
drive, can be entirely overlooked in the results on the 
conventional objective characteristics of sleep quality. It 
is likely that, in the presence of a stronger sleep drive, 
the traditional spectral EEG analyses fail to uncover the 

Table 3. Results of regression analysis aimed on prediction of gender of university students.
Questionnaire Self-assessment B Exp(B) −95% CI +95% CI

ESS ESS score 0.038 1.039 0.996 1.084
PSQI Sleep duration, last month 0.372 1.451 0.835 2.520

SOL, last month −0.009 0.991 0.980 1.001
Hours slept, last month −0.410 0.664 0.357 1.233
Sleep efficiency, %, last month 0.045 1.046 0.996 1.099
Subjective sleep quality score −0.427*** 0.652 0.517 0.823

Results of binary logistic regression analysis aimed on the prediction of gender (male vs. female, n = 214 vs. 419, respectively). Level of 
significance for B (beta coefficient) calculated for each of the predictors of gender: ***p < 0.001. Exp(B): The odds ratios for predictors (the 
exponentiation of regression coefficient); −95% CI, +95% CI: their 95% Confidence Intervals. ESS: Score on the 8-item Epworth Sleepiness 
Scale was used for the determination of the level of daytime sleepiness (Johns 1991); SOL: Latency to Sleep Onset. The Pittsburgh Sleep 
Quality Index (PSQI) was used for self-reporting monthly averaged SOL, sleep duration, hours slept, sleep efficiency, and subjective sleep 
quality score (Buysse et al. 1989).
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influence of a stronger wake drive underlying the pre
disposition to report non-restorative sleep and insom
nia symptoms. The present results confirmed the 
previous results suggesting that the conventional mea
sure of sleep pressure, delta power, reflects the com
bined influence of two drives on the EEG spectrum, i.e., 
not only the influence of the drive for sleep but also the 
opposing influence of the drive for wake (Putilov 2011; 
Putilov et al. 2013). Principal component analysis of the 
EEG spectrum allows the separation of the influence of 
the wake drive from the opposing influence of the sleep 
drive.

Thus, a worse subjective perception of the quality of 
sleep demonstrated by women compared to men can be 
explained by such a stronger opposing drive for wake. It 
also can make women more vulnerable than men to 
perceiving the symptoms of insomnia which is the 
most common sleep disorder.

To our knowledge, this is the first report presenting 
results of a comparison of principal component scores 
in male and female study participants. However, there 
are limitations to our dataset. We studied the EEG 
markers of the drives for sleep and wake in this sample 
of male and female university students because it repre
sents a group of young adults at the same life course 
stage and with a relatively small gender gap in social, 
cultural, and environmental determinants of their sleep 
and wakefulness. The results obtained for such a sample 
do not allow their generalization to other ages and 
subpopulations with more prominent psycho-social dif
ferences between genders. It cannot be excluded that the 
fundamental biological differences in the drives for 
wake and sleep might not be clearly evident in the 
presence of prominent differences in social, cultural, 
and environmental determinants of women’s and 
men’s sleep. Therefore, the present results, if confirmed 
in independent studies of other subpopulations, will 
require further research aimed on the direct measure
ments of associations of each of the principal compo
nent scores with various objective and subjective 
characteristics of men’s and women’s sleep.

Conclusions

Sleep in women differs from sleep in men in several 
respects. Objectively measured characteristics of sleep 
efficiency and quality were usually found to be better in 
healthy women than men, but, paradoxically, self- 
reports on sleep-related complaints indicated that, as 
a rule, women more frequently than men suffer from 
insufficient or non-restorative sleep. Moreover, they are 
more often diagnosed with insomnia which is the most 
common sleep disorder. In the present study, we 

predicted and found higher scores on the 1st and 2nd 

principal components of the EEG spectrum in female 
than in male participants. The fact that, as predicted, 
higher principal component scores yielded a significant 
association of being female, this association was inter
preted as indicating stronger sleep and wake drives in 
women than men. Because the 1st principal component 
is the major contributor to objective indexes of sleep 
quality, a stronger women’s sleep drive might explain 
women’s better sleep quality in the results of polysom
nographic studies. On the other hand, if a stronger 
women’s wake drive can influence the perception of 
their sleep quality, this might be an explanation of 
their more frequent reports of sleep-related complaints.
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